WAEC GCE Second Series (November) Answers: 2024 WAEC GCE Second (2nd) Series Questions

Are you taking 2025 JAMB, WAEC, NECO or GCE Exams Next Year? If Yes then Click Our Only WhatsApp Number Below to Join Our Free Group

           To get 2024 WAEC GCE Second Series (November) Answers midnight before the exam, Click on this      

2024/2025 Waec SSCE Further Mathematics Expo Questions and Answers

Answers Loading….. …..

Keep Refreshing this Page.

FURTHER MATHS ANSWERS

(1)
5^4^(3x/4 -1) + 5^3(x-1)/5^(3x – 2)
5^3x/4 – 4 + 5^3x – 3/5^3x – 2

5^3x – 4 + 5^3x – 3/5^3x – 2
(5^3x ÷ 5^4) + 5^3x ÷ 5^3÷5^3x – 2

5^3x/625 + 5^3x/125÷5^3x- 2

5^3x + 5(5^3x) ÷ 5^3x-3

5^3x + 5(5^3x)/625 ÷ 5^3x/25

Let 5^3x = y
y + 5(y)/625 ÷ y/25
y + 5y/625 × 25/y
=6y/625 × 25/y
=6/25

1(b)
F(x+2)-6x^2+5x-8 f(5
X+2=5z

X=5-2
X=3

6x^2 +5x-8
=6(3)^2 + 5(3)-8
=54+15-8
=6!

(2a)
Using y2 – y1/x2 – x1
Where y2 = 7, y1 = -5,
X2 = -2, and X1 = 7

7 – -5/-2 – 7
=7+5/-9
=12/-9
=4/-3
Coordinate points :
-4/3(3 : 2)
=-12/3 : -8/3
= -4 : -2⅔
X = (-4, 2⅔)

(2b)
2/1-√2 – 2/2+√2
=2(2+√2)-2(1-√2)/(1-√2)(2+√2)
=4+2√2 – 2+2√2/2+√2-2√2 – 2
=2 + 4√2/-√2
=(2+4√2)(-√2)/-√2(-√2)
= -2√2 – 4(2)/2
= -8 – 2√2/2
= -4 – √2

(3)
Sn = A/2[2n+(n-1)d]
Where Sn = 165
a = -3, d = 2
165 = A/2[2(-3)+(n-1)2]
165 = n[-6+2n-2]/2
165×2 = n[2n – 8]
330 = 2n² – 8n
2n² – 8n – 330 = 0
n²-4n-165 = 0

Using -b±√b²-4ac/2a
4±√-4²-4(1)(-165)/2(1)

4±√16 + 660/2
4±√676 = 4±26/2
4+26/2 = 30/2
= 15 terms

(4)
Draw the right angled triangle

Using Pythagoras theorem
Third side = √(p+q)² – (p-q)²
=√(p+q+p-q)(p+q-p+q)
Difference of two squares.
=√(2p)(2q)
=√4pq
Adjacent side = 2√pq

Tanx = opp/adj = p – q/2√pq
1 – tan²X = 1-(p-q)²/4pq
=(4pq)-(p²-2pq+q²)/4pq
= -p²+6pq-q²/4pq
= -(p² – 6pq + q²)/4pq

(5)
Draw the diagram

Using cosine law
Cos∅ = 16²+10²-14²/2(16)(10)

Cos∅ = 256 + 100 – 196/320

Cos∅ = 160/320
Cos∅ = 0.5
∅ = cos-¹(0.5)
∅ = 60°

Angle between 10N and 16N
= 180 – ∅ (sum of angles on a straight line)
= 180 – 60
=120°

(6)
Draw the diagram
Taking moment about the pivot,
(T × 25)=(50×10)+(20×45)
25T = 500 + 900
25T = 1400
T = 1400/25
T = 56N

(7)
In a tabular form
Under class interval:
1-5, 6-10, 11-15, 16-20, 21-25, 26-30

Under class mark (X):
3, 8, 13, 18, 23, 28

Under X-Xbar:
-10, -5, 0, 5, 10, 15

Under frequency:
18, 12, 25, 15, 20, 10
Ef = 100

Under f(X – XbarA):
-180, -60, 0, 75, 200, 150
f(X – XbarA) = 185

Where xA = 13

Mean = xA + Ef(X – Xbar)/Ef
=13 + 185/100
=13 + 1.85
=14.85years

PLS NOTE THAT XBAR LOOKS LIKE X WITH MINUS SIGN ON TOP.

(10a) given 4x² – px +1 = 0
For real roots: b² – 4ac >0
(-p) ² – 4(4) (1) > 0
p² – 16 > 0
p² >16
p > ± 4

(10bi) Given: (1 +3x)⁶
Using pascal’s triangle: 1, 6, 15, 20, 15, 6, 1
(1)⁶(3x)º + 6(1)⁵ (3x)¹ + 15 (1)⁴ (3x)₂ + 20(1)³ (3x)³ + (15) (1)²(3x)⁴+6(1)¹(3x)⁵ + 1(1)º(3x)⁶
1 + 6(3x) + 15 (9x²) + 20 (27x³) + 15 (81x⁴) + 6(243 x⁵) 729x⁶
1 + 18x + 135x² + 540x³ + 1215x⁴ 1458x⁵ + 729x⁶

(ii) (1.03)⁶ = (1 + 3(0.01)]
Therefore (1.03)⁶ = 1 + 18(0.01) + 135 (0.01)² + 540(0.01)³ + 1215(0.01)⁴
+ 1458 (0.01)⁵ + 729 (0.01)⁶
+ 1 + 0.18 + 0.0135 + 0.005 + 0.00001215
+ 0.0000001458 + 0.000000000729
= 1.1940523
= 1.194 (4s.f)

(12) prob (pass) = 60% = 60/100 =3/5
Prob (fail) 1-3/5 = 2/5
(a) Prob (atleast two failed) = 1 – prob (ome pass)
= 1 – 10Ci (3/5)¹ (2/5)⁹
1 – (10!/9!) (3/5) (2/5)⁹
= 1 – 10 (3/5) (2/5)⁹
= 1 – 10 (3/5) (0.000262144))
= 1 – 0.001572864
= 0.9984

(12b) prob (exastly half passed)
= 10C5 (3/5)⁵ (2/5)⁵
= 10!/5!5! (6/25)⁵
= 252 (6/25)⁵
= 252 x 0.0007962624
= 0.2007

(12c) prob (at most two failed)
= prob (zero/fail) + prob (one/fail) +prob (two/fail)
= 10C (2/5)º (3/5)10 + 10C (2/5)¹ (3/5)⁹ + 10 C2(2/5)² (3/5)⁸
= (3/5)10 + 10 (2/5) (3/5)⁹ + 45 (2/5)²(3/5)⁸
= 0.060466176 + 0.040310784 + 0.120932352
= 0.1673

(14a)
Draw the diagram

(14b)
From the diagram
a = v – 20/4
2.5 = v – 20/4
V – 20 = 10
V = 10 + 20 = 30m/s
acceleration/retardation = 3/4
2.5/30/T-12 = 3/4
2.5(T – 12)/30 = 3/4
(T – 12) = 30×3/2.5×4
= 90/10 = 9
T – 12 = 9
T = 9 + 12 = 21
t = T – 12
t = 21 – 12
t = 9secs

(14c)
Total distance of the journey
= Area of BCDI + Area of AFEO + Area of DFI
= 1/2(12+8)10 + 1/2(9×10) + 1/2(21+21)20
= (20/2)10 + 90/2 +(42/2)20
=10(10) + 45 + 21(20)
=100 + 45 + 420
= 565m

 

 

 

 

 

Add a Comment

Your email address will not be published. Required fields are marked *

error: Content is protected !!