# 2024 WAEC Further Maths Answers Posted 7:00am

**2024 WAEC FURTHER MATHS ANSWERS**

## We Won’t Post Answers Here again after today, WhatsApp 08162563540 to get your Complete 9 subjects Answers.

***FURTHER MATHEMATICS ANSWERS***

***INSTRUCTIONS;**YOU ARE ANSWER ALL QUESTIONS IN* *SECTION (A)AND ANSWER ONLY FOUR QUESTIONS IN SECTION (B)*

**====================**

**NUMBER 1,2,3,4,5,6,7,8,9,10,11,13,14 POSTED**

**Examkey Waec Answers 2024 Expo Runz**

__FURTHER MATHEMATICS-OBJ__

__1-10: BBCCCDDCAB__

11-20: BBBBBADDBA11-20: BBBBBADDBA

21-30: CCCDCBDBAA21-30: CCCDCBDBAA

31-40: ACDDADDDBD31-40: ACDDADDDBD

. Completed.. Completed.

**NO. 1**

**NO. 2**

**NO. 3**

**NO. 4**

**NO. 5**

**NO. 6**

**NO. 7**

**NO. 8**

(8)

**To find MP, we can use the fact that P is the midpoint of NO. Since P is equidistant from MN and MO, the line segment MP is the perpendicular bisector of NO.**

**First, let’s find the coordinates of P. The midpoint of NO can be calculated by taking the average of the corresponding coordinates of N and O:**

**P = (1/2)(N + O)**

**Given MN = 8i + 3j and MO = 14i – 5, we can find the coordinates of N and O:**

**N = (8i + 3j) + (14i – 5) = 22i – 2 + 3j**

**O = (14i – 5) + (8i + 3j) = 22i – 2 + 3j**

**Now, we can find P:**

**P = (1/2)((22i – 2 + 3j) + (22i – 2 + 3j))**

**= 1/2(44i – 4 + 6j)**

**= 22i – 2 + 3j**

**Next, we can find the vector MP by subtracting the coordinates of M from the coordinates of P:**

**MP = P – M**

**= (22i – 2 + 3j) – (14i – 5)**

**= 8i + 3j + 3**

**Therefore, MP = 8i + 3j + 3.**

**NO. 9**

**NO. 10**

**NO. 11**

**NO. 13**

**NO. 14**

**FURTHER MATHS QUESTIONS BELOW:**

Categories: WAEC Syllabus Past Questions and Answers

0 Responses